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Longest Path in Percolating Hierarchical Lattice 

P. Sen I and P. Ray I'2 

Received October 11, 1989," revision received December J9, 1989 

We determine numerically the probability distribution for the longest self- 
avoiding path lengths connecting two distant points on a diluted hierarchical 
lattice at the percolation threshold. The evolution of this distribution with the 
system size is studied and the distribution is observed to approach a universal 
scale-invariant form under proper rescaling of its argument. The longest path 
length scales as IAPl -~m~ and our estimate for (max = 1.816+0.013 is clearly 
different from the previously estimated (min = 1.531 _+ 0.002 for the shortest path 
lengths on the same hierarchical lattice. This gives support to the multifractal 
behavior of SAWs on percolating clusters. 

KEY WORDS: Self-avoiding walk; percolation threshold; critical exponents; 
multifractal behavior. 

1. I N T R O D U C T I O N  

In a dilute lattice, the bonds/sites of the lattice are removed at r andom with 
a finite probabil i ty 1 - p ,  and a self-avoiding walk (SAW) on such a lattice 
has to avoid the vacant  sites or  bonds. In recent years, there has been a 
number  of  studies (1) on the effect of  the lattice dilution to the SAW 
behavior,  especially at the percolat ion threshold Pc of the system. It has 
been pointed out  (2) that  on a percolat ion cluster, different self-avoiding 
connections between any two widely separated points (at a distance of  the 
order  of  the correlat ion length 4) scale with different exponents, forming a 
cont inuous spectrum and one needs an infinite set of exponents to fully 
characterize the probabil i ty distribution of the SAW lengths. Thus, the 
shortest SAW Lmin, the longest SAW Lma x, and the average SAW length 
( L >  between any pairs of points all have different scaling exponents at Pc. 
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While the behavior of Lmi n o r  ( L )  has been studied in some details, 3 the 
longest path Lma • has not received the same attention. In this paper, we 
study L . . . .  precisely the length of the longest SAW that on average can be 
embedded on a percolating lattice, and how this length behaves at Pc.. 

Our calculations are performed on a diluted Wheatstone-bridge 
hierarchical lattice (Fig. 1) described in the next section. We focus our 
attention on the probability distribution Ps(l) of the longest SAW lengths 
l in a system of size s, and especially on the manner in which this distribu- 
tion evolves as the system size s is increased. The distribution is determined 
numerically for p = Pc. At Pc, the distributions P~(l) for different system 
size s are found to approach a nontrivial function under proper rescaling 
of the arguments. The function P(x)  which the scaled distribution attains 
is universal, as are the critical exponents. We obtain the exponent ( . . . .  
which describes the scaling of the length of the longest SAW, Lm~• 
~mo~/~ lap] ~m% where v is the correlation length exponent. Our estimate 
of (max=l .816+0.013  is much greater than (m~,=1.531• for the 
shortest path (see ref. 3) on such a hierarchical lattice, indicating the multi- 
fractal behavior of SAWs on a percolating cluster. Though our calculations 
have been done on a hierarchical lattice, we expect that this result would 
be qualitatively valid on regular lattices as well. 

2. T H E  M O D E L  A N D  E N U M E R A T I O N  P R O C E S S  

The hierarchical lattice we consider is of the Wheatstone bridge type 
as shown in Fig. 1. At the zeroth order (n = 0) we have only a primitive 
bond as shown in Fig. la. In the next stage, five such primitive bonds are 
assembled to form the unit in the first order (n = 1) as shown in Fig. lb, 
and the process is carried on repetitively to form the lattice at any arbitrary 
order n. We consider the bond percolation problem on such a hierarchical 
lattice where each bond of the lattice is present with a probability p. At any 
order n, we determine the probability P(1) for the longest self-avoiding 
path l (2n~< l ~< 3") that connects the topmost  point Tn to the lowest point 
B~ (see Fig. 1) through the set of occupied bonds. The enumeration process 
closely follows the one used for the determination of shortest paths on such 
hierarchical lattice in Barma and Ray/3) The primitive bond ( n = 0 )  in 
Fig. la  is present with probability p and has l =  1; otherwise, when the 
bond is absent (this has the the probability 1 - p), we have l =  0. At n = 1 

3 For the study of Lmi n (~m~dv, where v is the percolation correlation length exponent) on 
a percolation cluster, see Barma and Ray ~ and the references therein, and for a recent 
review on the behavior of <L) (~ (1/vsAw, where V SA w is the random SAW size exponent on 
the percolation cluster) in the presence of dilution see ref. 1. 
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Fig. 1. The generation of the hierarchical lattice from the n th to the (n + 1)th level. The 
longest path connecting Tn+, and B.+~ is calculated from the five n-level longest paths ll, 
12 ..... Is. 

each of the li ( i=  1, 2,..., 5) in Fig. lb is either 1 or 0 as in the case of the 
n = 0 level bond and the maximum path lengths assume the values 3, 2, or 
0 according to the probabilities P1(3) = _p5 + 2p3, P1(2 ) = 3p5 _ 5p4 + 2p2, 
or P I ( 0 ) =  1 - P l ( 2 ) - P 1 ( 3 ) ,  respectively. It is clear that for any n the 
longest SAW length l connecting T~ and B, is a function f ( l l ,  12,..., /5) only 
of the longest SAW lengths ll, 12 ..... Is that appear in the ( n -  1)th order. 
Explicitly, 

f ( l l ,  12 ..... 15) = Max[/~ +/2 , /4  +/3,  ll +/5 +/3,  14+ls+12] (1) 

with the sum role ~2 l i = 0 if any of the components l i = 0. The probability 
distribution Pn(l) is then determined by 

5 

P n ( l ' ) = ~ 2  2 P .  l(li) ( ~ ( l - f ( l l ,  [2 ..... /5) )  (2 )  
ll..15 i= 1 

where the finite sums over the li ( i=  1,..., 5) run through all the integral 
values from 2 n- 1 to 3 n- 1. 

We use a Monte Carlo method to study the evolution of P,(l). A ran- 
dom number generator is used to select each li with relative frequency 
P , -1 ( l ) .  For  each such try, l is determined using Eq. (1) and the distribu- 
tion Pn(l) is obtained by repeating the procedure many times (.v200 times 
for n = 2 and ~4000n times for higher n) for different {le} configurations. 

We start from n = 1, for which we know l and the distribution P~(l) 
exactly, and use the Monte Carlo method to generate l and Pn(l) for n = 2 
and onward (we have been able to compute up to n = 10). For  finite n the 

822/59/5-6-31 
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distribution P, ( l )  consists of a series of delta functions at the integral 
values of l from 2 n to 3 ~ and the sum ~ P,(1) = pn, the probability that T,, 
and B, are connected at the nth order of construction. The distance 
between T, and B~ increases with n and the evolution of P, ( l )  as n ~ oe 
becomes important.  

3. SCALING F O R M  ATp=pc 

The hierarchical lattice we have considered has Pc = 0.5 exactly for all 
n. At any generation n, if pn is the effective probability that the nodal 
points T n and Bn are connected, then Pn + 1 is determined in terms of p~ as 

5 4 Pn + l = 2p ~ -- 5pn + 2P3n + 2P2n (3) 

This recursion relation, true for any n, is exact in this lattice and has an 
unstable fixed point pc=0 .5 /4)  At the nth generation, T and B are 
separated by 2 n bonds, and at the (n + 1)th generation by 2 ~ +1 bonds, so 
that the scale factor b = 2. The correlation length exponent v is obtained on 
linearizing Eq. (3) around Pc as 

v = In b/ ln(@.  + 1/Opn)lp~ = 1.428 

At Pc, the probability distribution P(l)  at any n is expected to 
approach a scale-invariant form 

P(I)  =/~21p(l/)~n) (4) 

where the scale factor is 

; . n = z  n (5) 

We estimate X from the mean and the root mean squared longest path 
at the nth level as follows 

( l ) , , _ ~ c i L ,  

( (12),,)v2~- c22n (6) 

where cl and c: are constants involving moments  of the scaled function P 
a s  

Cl 

where x = l/)~ ~ for the paths l at the nth generation. From Eqs. (5) and (6), 
both ( l ) n + l / ( l ) n  and ((12)~+1/(12)n)~/2 should approach Z for large n. 
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We have determined <l)n and <12)n from our numerically obtained 
distributions Pn(l). The ratios versus 1In are plotted in Fig. 2. It appears 
from the figure that the extrapolated value of Z for 1/n ~ 0 lies near 2.420. 
Hence, by putting different values of Z around 2.420 in Eq. (4), it was 
found that the distributions Pn(l) for n = 7 ,  8, 9, and 10 obey the best 
scaling form for Z = 2.415 4- 0.015. 

The universal form of P(x)  as determined from our data for n = 7, 8, 9, 
and 10 and Z = 2.415 is shown in Fig. 3. Since the number of data points 
for higher values of n becomes unmanageably large (,,~ 3n), we have adop- 
ted a binning procedure where P(l)  is obtained on averaging PUt) over a 
finite range A of l values so that the final P ( I ) =  1/A~V~+~ / L ~ l ~  P(li) }, and 
l = I~ + A/2. The value of A has been chosen depending on n; as n increases, 
A is increased. Typically, A ~ 25 for n = 7 and A ~ 100 for n = 9 and above. 
Hence, Fig. 3 shows a finite number of points. 

The average longest path <l)n at the nth level depends on its scale 
w a s  

where R n is the distance between T n and B n and can be taken as R,  
as the basic scale. F rom Eqs. (6) and (8) we get for large n 

dr = In g/ln 2 = 1.272 + 0.009 

and for Rn ~ the correlation length 3, 

( 8 )  

= 2 n 

(9) 

L m a x ~  ds-=. Jp-pr  -vd" (10) 

2.49 

Fig. 2. 
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The ratios of ( � 9  the mean and ( x ) root mean squared longest path lengths plotted 
against 1In. The Z is estimated from the value of these ratios as 1In --+ O. 
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Fig. 3. The scaled probability distribution P(x) with x = l/z" at Pc for values of n = (A) 7, 
(O) 8, (O) 9, and (x)  10, for Z=2.415. 

Hence the longest path exponent ~max turns out to be 

~m,x = vds = 1..816 +0.013 (11) 

The error estimates for d, and hence ~m~x correspond to that of Z found 
from Fig. 2. 

4. D I S C U S S I O N  

In this paper, we have determined the length of the longest self- 
avoiding path Lma x between any two points in a percolating system and its 
variation as the distance between the points is increased. Calculations are 
performed on a bond diluted Wheatstone bridge hierarchical lattice and the 
entire probabili ty distribution Pn(1) of the length l of the longest SAWs at 
Pc is determined numerically for different generations (n = 1-10) of the 
lattice. P,(l)  is observed to approach a scale-invariant form P ( / / 2 , ) =  
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2nPn(/) with the scale factor 2 n - Z ,  where )~ is found to be equal to 
2.415 + 0.015. The scaling form of Ln~ax is obtained as Lmax "~ IApl-~_m.x with 

. . . .  = 1.816 +_ 0.013. 
The result for the hierarchical lattice can be expected to be valid only 

qualitatively for regular lattices. However, the enumeration process on this 
lattice has some advantages. In fact, extensive work has been done on 
hierarchical lattices (s) providing interesting examples of phase transitions 
and critical behavior. The position space renormalization group (PSRG) 
transformations as given by Eq. (3) are exact (4) on this lattice, but are only 
approximate for regular lattices. (6) For any generation n, Pc = 0.5 exactly, 
and the scaling form of Pn(l) as given by Eq. (4) can be obtained 
accurately. On this hierarchical lattice, any SAW at order n can be 
decomposed into SAWs on sublattices of order n - 1  and so on, so that 
knowing the l for small n, one can obtain the corresponding values for 
larger n and the enumeration problem becomes essentially local. If E n is the 
number of SAWs to be checked to find the longest one at any order n, then 
E,  = 5E n ~ + 4 = 5 ~ -  1 = 2 ( N n -  2), where N~ = (5" + 3)/2 is the number 
of sites in the lattice at that order. Hence the problem is tractable in the 
sense that the computer time required to find the longest SAW varies 
linearly with the number of sites in the system. In regular lattices, the 
problem of finding the longest SAW is essentially global, rendering it much 
more difficult to check any plausible scaling form. 

As expected, our estimate of ~max = 1.816-t- 0.013 is very close to the 
PSRG estimate ~'max = 1.835 for two-dimensional regular lattices. (4) It is 
also within the error bars of the theoretical estimate ~max = 1.77 +0.03 
obtained assuming a functional form of ~(2) However, it differs slightly from 
the numerical estimate ~max ~ 1.59 on a regular square lattice. (2) 

The value of ~m~x is different from the shortest path exponent ~m~, = 
1.531 +0.002 on the same hierarchical lattice, (3) showing that the longest 
and shortest paths scale with different exponents on a percolation cluster. 
This indices that there might be a multifractality associated with the scaling 
of the SAW at p~. The two values ~min and ~'~,~ might provide bounds for 
the size exponent VsA w for the mean SAW <L> as (mi~/v <~ I/VsAw ~ ~rnax/V. 
Therefore, for this lattice, 0.786~<VsAw~<0.933. However, to our 
knowledge, no estimate of VSAW on a percolation cluster on this lattice is 
known. 
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